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Effect of various concentrations 
of superabsorbent polymers on 
soil particle-size distribution and 
evaporation with sand mulching
Wenju Zhao1,2, Taohong Cao1,2, Pinxin Dou1,2, Jie Sheng1,2 & Minqiang Luo1,2

Superabsorbent polymers (SAPs) are type of hydrogels capable to swell and absorb a large amount 
of water, but easily decomposed and oxidized by the air. We used electron-microscopic imaging in an 
indoor simulation with sand mulching to test the effects of various SAP concentrations on controlling 
evaporation and salt formation. The treatments were sand-mulched columns containing 0, 0.1, 0.2, 
0.5 and 1.0% SAP. The soil particle pores were from dense to sparse and the corresponding fractal 
dimension decreased as SAP concentration increased. SAP concentration was correlated negatively 
with fractal dimension, clay-particle fraction and silt-volume fraction. And it showed a positive 
correlation with sand volume fraction. SAP concentration significantly affected the particle-size 
distribution. Water-storage capacity increased in each column layer (five 8-cm layers) at the same 
infiltration depth. Evaporation decreased the water content of each layer. Sand mulching combined 
with the SAP decreased evaporation in each layer relative to the control, which retained more water 
and decreased the accumulation of surface salt in the order 1.0% > 0.5% > 0.2% > 0.1% > 0. Salt 
migrated at 0–30 cm with sand mulching but 0–25 cm with sand mulching and SAP amendment. The 
decrease in salt accumulation was most effective at a SAP concentration of 0.2%.

Superabsorbent polymers (SAPs) are weakly cross-link functional polymeric materials with strong hydrophilic 
groups, which can absorb a large amount of water during a short time and the absorbed water is hardly removable 
even under pressure1. The application of SAP to soil is conducive to improving rainwater utilization efficiency in 
dry farmland2. And SAPs with high swelling capacity are of special interest as potential water retainer systems for 
agriculture fields3. SAP can absorb a solution of 10-folds to 1000-folds as much as its own weight4. SAP increased 
the water retaining capacity of soil sections where the suction pressure was between 0 and 3,000 cm5. The SAP 
can improve plant drought resistance and have been described as agricultural “micro-reservoirs”6,7. Goebel et al.8 
reported that SAP can increase the water-holding capacity of soil and soil aggregation and aid the protection of 
organic matter. Woodhouse et al.9 found that SAPs could inhibit soil-water evaporation. Han et al.10,11 concluded 
that after SAP treatment, the soil hydraulic parameters and water holding capacity have undergone significant 
changes. The extensive use of SAPs, however, is severely restricted, because they are easily decomposed and oxi-
dized by the air12.

Sand mulching can insulate soil from high illumination and hinder SAP oxidation to some extent, which 
have allowed the application of SAPs in northwestern China. Sand mulching can inhibit the evaporation of soil 
water, improve the soil environment, increase the infiltration of rainwater, store water and retain soil water13–15. 
So, studies have begun to investigate the effect of SAPs on sand-mulched soil. Zhao et al.16 studied the effect of 
various concentrations of SAPs on the infiltration of soil water with sand mulching, and found that the infiltra-
tion rate of soil water was optimal at a SAP concentration of 0.2%, which effectively increased the amount of 
water in the soil. However, there is little research on the effect of the combination of the two on soil evaporation, 
and the mechanism of action is unclear. Han and Yang et al.17 concluded that application of SAP can reduce 
soil bulk density, improve soil permeability, and cause soil expansion. Wang et al.18 found that the inhibition of 
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soil-water evaporation did not improve if SAP concentrations were too high or too low. We therefore are trying 
to study the effect of SAPs on particle-size distribution and soil-water evaporation using indoor simulations and 
electron-microscopic imaging.

The purposes of this study were to determine (1) how combining a modern SAP with traditional sand mulch-
ing could inhibit soil-water evaporation and salt formation, (2) how different SAP concentrations with sand 
mulching affected soil particle-size distribution by using electron-microscopic imaging, (3) the best SAP concen-
tration for inhibiting soil-water evaporation and salt formation is 0.2%.

Materials and Methods
Experimental Materials.  The SAP used in the experiment was a superabsorbent polymer, a white granular 
dry powder with particle sizes of 0.8–1.0 mm. The main components were acrylamide copolymerized with con-
vex/concave rod graft polymers. The soil, a sandy loam, was collected from a depth of 0–30 cm near the test site of 
Lanzhou University of Technology in Jingtai County, China. The soil was air-dried, crushed and sieved through a 
2-mm sieve to remove impurities (the initial SWC was 0.75%). The particle-size distributions of the soil and the 
sand used for mulching are shown in Table 1.

Experimental design.  We tested a control group and four treatment groups. No SAP was applied to the soil 
in the control sample. SAP at a polymer concentration of 0.1, 0.2, 0.5, and 1% were respectively applied to the 
soil of treatment groups. The SAP concentrations were calculated as the mass ratio of the SAP to the mass of a 
0–10 cm soil layer. A 10-cm layer of the sand mulch was then added, and the column was allowed to settle for 24 h. 
The soil columns were cylindrical Plexiglas columns, 70 cm high and 20 cm in diameter. The middle of the bottom 
of the column had a 2.5-cm circular hole (Fig. 1). The wall of the column contained six holes 2.5 cm in diameter 
and 8 cm apart vertically, which were plugged with wood when the soil was added. The bottom hole was covered 
with three layers of gauze to prevent the loss of soil. Soil (bulk density of 1.30 g/cm3) was added to the columns in 
8-cm layers to a depth of 40 cm to maintain a consistent bulk density.

Using the Markov bottle for thin layer water experiment, after the infiltration, the soil standing for 48 h and 
then sampling, the sampling position were at the soil surface was 2, 10, 18, 26, 34, 42 cm, salt content and water 
content was measured as the initial data. After infiltration taken 0–10 cm soil surface, The Dried soil samples 
were scanned by soil particle scanning electron microscope S-48005.0 kV, the soil particle size distribution (PSD) 
was determined by the MS-2000 laser particle size analyzer. In the evaporation test, using a 275 W infrared lamp, 
the distance between the sand surface and the lamp was 20 cm, and evaporation was continuous 24 h/d for 30 d. 
The test environment temperature is controlled at 23 °C ± 2 °C. The relative humidity is 45% to 75%. Ten-gram 
samples were collected from the holes in the column walls the day before the beginning of evaporation and on 
days 10, 20 and 30 after the beginning of evaporation. The sampling position is the same as before the start of 
evaporation, and then filled the soil with the same water content. Soil water content (SWC) was determined by 
weighing the soil before and after drying. Soil salinity (1:5 soil: water) was measured by a conductivity meter 
(FG3-ELK, Mettler, Switzerland).

Data processing.  Particle sizes were graded using the USA grading standard: clay (0–2 μm), silt (2–50 μm) 
and sand (50–2000 μm). The particle sizes were set to 0–2, 2–5, 5–20, 20–50, 50–500 and 500–1000 μm for calcu-
lating the fractal dimension.

The fractal dimension of the particle-size distribution was calculated following Tyler et al.19:
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Where r is particle radius, Ri is particle size of grade i, V(r < Ri) is particle size less than Ri, VT is total particle 
volume and Rmax is the largest particle size. The left side of Eq. (2) was used as the y-axis of a scatter plot, and the 
right side was used as the x-axis, with the least squares method used for linear fitting.

All data were analyzed using Excel (version 2010, Microsoft Corporation, Redmond, USA), IBM SPSS 
Statistics (version 20.0, International Business Machines Corporation, Armonk, USA) and Origin (version 8.0, 
OriginLab, Hampton, USA).

soil Particle size (μm) <1 <10 <50 <1000 <2000

soil (%) 10.06 23.13 80.26 99.46 100.00

Sand composition (mm) <0.63 <1.25 <2.50 <5.00 <10.00

sand (%) 34.62 59.70 79.58 94.51 100.00

Table 1.  Particle-size distributions of the experimental soil and sand mulch.
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Results and Discussion
Effects of various SAP concentrations with sand mulching on soil particle-size distribution.  
Because of the strong water absorption properties of SAP, sandy soil treated with SAP the soil particle size dis-
tribution has changed and thus the soil structure has also changed20. Therefore, SAP was an important factor 
affecting soil particle-size distribution (PSD). The percentages of clay (0–2 μm), silt (2–50 μm) and sand (50–2000 
μm) differed among the five test soils (Fig. 2) in the order silt > sand > clay particles. Clay is the largest percentage 
of particles, which was about 80%, sand content from 20 to 25%. From the particle size figure, the distribution 
of particles showed different density in different concentration of SAP. In the figure b1, c1, d1, the particles have 
smaller pore, in figure a1, e1, the soil particles have larger pore. Which showed is that increased with the concen-
tration of SAP, the soil pore from dense to sparsely. The relationship between SAP concentration and the PSD of 
the surface soil with sand mulching is presented in Tables 2 and 3.

The fractal dimension (D) of particle size varied with the volume fractions of the particle sizes (Table 2). D 
gradually decreased as SAP concentration increased; fine-particle content decreased at high SAP concentrations. 
D was correlated positively with the volume fractions of clay and silt particles and negatively with the volume 
fraction of sand (Table 3). The volume fractions of silt and clay particles increased, and D tended to increase 
significantly, indicating that the non-uniformity of particle-size distribution increased with clay content. SAP 
concentration was correlated negatively with D and the volume fractions of clay and silt and positively with the 
sand volume fraction, indicating that the concentration of SAP could affect particle composition. SAP concentra-
tion was positively correlated with soil-water content, consistent with the water-storage characteristics of SAPs.

The fractal dimension of particle size and the concentration of SAP were fitted with a quadratic function 
(Fig. 3). D decreased as SAP concentration increased, indicating that the clay content in the surface soil gradually 
decreased. The relationship between D and SAP concentration was consistent with a quadratic function:

= + +y ax bx c (3)2

Where a, b and c are constants. The coefficient of determination, R2, was 0.987.
The various concentrations of SAP had a significant effect on the particle-size distribution after infiltration. 

The particle pore was from dense to sparsely, D decreased as SAP concentration increased and clay content 
decreased at high SAP concentrations.

Figure 1.  Soil column.
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Effects of various SAP concentrations with sand mulching on SWC.  Due to the influence of soil 
water storage capacity on different concentration of SAP, SWC was difference under each layer. The sampling 
points at 2 cm (with SAP) and 18 cm (no SAP) as the representative point to research SWC on different concen-
trations of SAP, as shown in Table 4. The soil moisture content at 2 cm and 18 cm decreases with the evaporation 
process, which accords with the soil dehydration process. On different soil columns, the SWC with SAP is higher 

Figure 2.  Image and distribution of soil particle size. (a1,a2) particle size distribution of CK; (b1,b2) particle size 
distribution with SAP concentration of 0.1%; (c1,c2) particle size distribution with SAP concentration of 0.2%; 
(d1,d2) particle size distribution with SAP concentration of 0.5%; (e1,e2) particle size distribution with SAP 
concentration of 1.0%.
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than CK, either before or after the evaporation, SWC increased with increasing concentrations of SAP, it shows 
that the water retention effect of SAP is 1.0% > 0.5% > 0.2% > 0.1% > CK.

Soil water will be redistributed after infiltrating and standing for 48 h, and SWC will vary among the layers 
depending on the SAP concentration and the amount of evaporation. The SWC in each column reached satu-
ration after 48 h of redistribution by gravitational force and capillary action and decreased with depth (Fig. 4a). 
The water-storage capacity differed among the columns due to the different SAP concentrations. SWC increased 
with SAP concentration. The average SWCs in the columns before evaporation were 34.85, 35.61, 36.73, 37.38 
and 38.59% for the SAP concentrations of 0, 0.1%, 0.2%, 0.5% and 1.0%, respectively. The average SWCs in the 

various SAP 
concentrations/%

Content of different particle sizes /%

SWC/%
fractal 
dimension D

the correlation 
coefficient/R2

clay sily sand

<2 μm 2~5 μm 5~20 μm 20~50 μm 50~500 μm >500 μm

0 8.665 11.816 29.498 30.606 19.208 0.207 28.55 2.568 0.887

0.10 7.979 10.716 29.063 30.645 21.382 0.215 32.70 2.550 0.894

0.20 7.508 10.559 28.013 30.756 22.940 0.224 33.64 2.539 0.898

0.50 6.971 9.280 27.641 31.083 24.786 0.239 34.56 2.520 0.904

1.00 6.256 9.115 27.023 31.578 25.653 0.375 38.16 2.502 0.904

Table 2.  Relationship between different SAP concentration and soil particle size distribution with sand 
mulching.

soil properties D
the volume 
fraction of clay (%)

the volume 
fraction of sily (%)

the volume fraction 
of sand (%)

SAP 
concentrations (%)

SWC 
(%)

D 1

the volume fraction of clay (%) 0.998** 1

the volume fraction of sily (%) 0.973** 0.973** 1

the volume fraction of sand (%) −0.988** −0.989** −0.997** 1

SAP concentrations (%) −0.95* −0.949** −0.865 0.899* 1

SWC (%) −0.968** −0.977** −0.937** −0.957* 0.911* 1

Table 3.  Correlation between soil particle size and fractal dimension.

Figure 3.  Correspondence between soil fractal dimension and SAP concentration.

sampling points CK 0.10% 0.20% 0.50% 1.00%

2 cm

before evaporation 36.73 37.83 39.29 40.66 42.55

day 10 of evaporation 28.55 32.70 33.64 34.56 38.16

day 20 of evaporation 27.97 29.41 31.57 32.08 34.64

day 30 of evaporation 26.07 28.91 30.85 30.93 33.65

18 cm

before evaporation 34.33 36.07 37.52 37.84 38.81

day 10 of evaporation 30.84 30.93 32.67 33.83 34.85

day 20 of evaporation 29.21 29.67 31.25 31.84 33.13

day 30 of evaporation 28.21 29.35 30.34 31.53 33.76

Table 4.  The average water content at different sampling in different SAP concentrations.
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columns with SAP concentrations of 0.1%, 0.2%, 0.5% and 1.0% were higher than the CK SWC by 0.76%, 1.88%, 
2.53% and 3.74%, respectively. Both the sand and the soil mixed with the SAP could thus increase soil-water stor-
age, which would reduce irrigation and increase the use of rainwater.

SWC of each layer decreased with the duration of evaporation (Fig. 4b–d). SWC of each layer decreased less in 
the columns containing the SAP than in CK after day 10 of evaporation. After 10 days of evaporation, SWC from 
top to bottom first decreased and then increased and was substantially lower in the middle than the upper layer, 
due to evaporation. The SAP will swell when it absorbs water and will form agglomerates, further cutting off the 
channels of rising water, because the SAP can absorb more water than the soil. The water lost from the upper layer 
by evaporation will be quickly supplemented by water from the lower layer, so water is lost faster from the middle 
than the upper layer. The lower layer is less affected by evaporation, so the moisture content of the lower layer 
decreased slowly. By day 30 of evaporation, when the concentration of SAP is 0.1%, 0.2% and 0.5%, the water con-
tent of upper and lower layers tends to be the same. The water content of each layer was highest at a SAP content 
of 1.0%, because less water is absorbed by the lower layer at SAP contents <0.5%. Most water is lost from the SAP 
layer. Soil with high contents of SAP (e.g. 1.0%) can absorb more water than the lower layer.

SWC was about 30% in each layer at a SAP concentration of 0.2%, which would be able to meet the needs of 
crops. SWC would be too high at SAP concentrations >0.2%, leading to lower rates of seed germination and poor 
economic returns.

Effects of various SAP concentrations with sand mulching on salt content in soil profile.  Salts 
are mainly transported by migrating water, so soil water is the main carrier of salt. Two processes are important 
in the accumulation of surface salt: the downward leaching of salt leading to the desalination of the surface soil, 
and the upward migration of salt in the water evaporated from the surface soil. The effects of different concentra-
tions of SAP on soil average salt content were studied at 2 cm (with SAP) and 18 cm (no SAP) of sampling points 
(Table 5). Soil salinity varied over time in the columns due to evaporation (Fig. 5).

It can be seen from Table 5 that the soil average salt content with the SAP is much lower than CK, and the 
change trend of the average salt content at 2 cm is generally increased with the progress of evaporation, but the 
trend at 18 cm is first increased and then decreased. This is consistent with soil salt accumulation in the sur-
face. Whether it is evaporated before or after evaporation, the average salt content of the soil decreased with the 

Figure 4.  Soil-water content with depth for the various SAP concentrations. (a) before the beginning of 
evaporation; (b) day 10 of evaporation; (c) day 20 of evaporation; (d) day 30 of evaporation.
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increase of the concentration of the SAP. The results showed that the SAP could decrease the salt content, and the 
salt suppression effect was 1.0% > 0.5% > 0.2% > 0.1% > CK.

We simulated the two processes of salt transport in the soil columns (Fig. 5a). The salt contents before evap-
oration were 0.22, 0.22, 0.21, 0.21 and 0.19 ms/cm in the columns with SAP concentrations of 0, 0.1, 0.2, 0.5 and 
1.0%, respectively. The average soil salt content was lower in the columns containing the SAP than in CK and 
decreased as SAP concentrations increased. The SAP in the upper layer formed an area that stored water, so that 
the salt in the soil was more fully dissolved in the water, and more salt was leached to the lower layers. Mixing 
soil with SAPs can thus leach salt downward. Salt was continuously concentrated in the surface layer during 
evaporation as water moved upward through the soil capillaries (Fig. 5b,c). The range of salt migration was only 
0–30 cm with sand mulching but was 0–25 cm with the combination of sand mulching and SAP amendment. The 

sampling points CK 0.10% 0.20% 0.50% 1%

2 cm

before evaporation 0.22 0.22 0.21 0.21 0.19

day 10 of evaporation 0.52 0.37 0.35 0.34 0.33

day 20 of evaporation 0.61 0.49 0.46 0.44 0.43

day 30 of evaporation 0.71 0.60 0.51 0.48 0.50

18 cm

before evaporation 0.33 0.31 0.33 0.30 0.32

day 10 of evaporation 0.59 0.57 0.54 0.54 0.56

day 20 of evaporation 0.53 0.54 0.52 0.55 0.53

day 30 of evaporation 0.46 0.49 0.54 0.57 0.52

Table 5.  The average salt content at different sampling in different SAP concentrations ms/cm.

Figure 5.  Variation of soil-salt content with depth for the various concentrations of the SAP. (a) before the 
beginning of evaporation; (b) day 10 of evaporation; (c) day 20 of evaporation; (d) day 30 of evaporation.
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salt contents in CK and 0.1% SAP were significantly lower in the middle layer than the upper and lower layers 
(Fig. 5d). More salt accumulated in CK than the 0.1% SAP treatment, due to the inhibition of evaporation by the 
SAP. Small amounts of salt accumulated in the 0.2, 0.5 and 1.0% SAP treatments. Adding a SAP to soil can thus 
effectively inhibit the accumulation of salt on the soil surface. The prevention of accumulation was optimal at a 
SAP concentration of 0.2%.

Conclusion

	(1)	 The different SAP concentrations had a significant effect on the distribution of soil particle sizes. The 
fractal dimension decreased as the SAP concentration increased, and the particle pore was from dense to 
sparsely. SAP concentration was correlated negatively with fractal dimension, clay-particle fraction and 
silt volume fraction and positively with sand volume fraction. High SAP concentration decreased the clay 
content.

	(2)	 SAP mixed into the top 10 cm of soil increased the water-storage capacity of each layer of the sand-
mulched soil column, which increased with concentration. Soil mixed with SAP significantly decreased 
the evaporation of soil water. A SAP concentration of 0.2% could decrease the evaporation of soil water 
enough to meet the needs for normal plant growth.

	(3)	 SAP mixed with soil increased desalination by increasing leaching in the order 
1.0% > 0.5% > 0.2% > 0.1% > 0. SAP concentrations >0.2% did not significantly decrease salt formation 
further. Salt migrated 0–30 cm with sand mulching but 0–25 cm with sand mulching and SAP amendment. 
Mixing 0.2% SAP into the 0–10 cm soil layer decreased both the evaporation of soil water and salt forma-
tion. SAP amendment at this concentration thus represents an economically feasible strategy for increasing 
crop yield in arid areas.
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